

Rational and Irrational Numbers

Goal: Work with irrational numbers.

Vo	cab	ula	ry
----	-----	-----	----

Irrational number:

A number that cannot be written as a quotient of two integers

Real number:

Any number in the set of all rational numbers and irrational numbers

Classifying Real Numbers EXAMPLE 1

Tell whether the number is rational or irrational.

- **b.** 0.31818...
- c. $\sqrt{2}$

Solution

- is the quotient of two integers (4 and 5), it is rational. a. Because
- 0.31818... is a repeating decimal, it is rational. **b.** Because
- **c.** Because 2 is a positive integer and is not a perfect square, $\sqrt{2}$ is irrational.

Guided Practice

Tell whether the number is rational or irrational.

Explain your reasoning.

1. $\frac{9}{20}$	2. √13	3. 5/6 4. √81.

EXAMPLE 2 Comparing Real Numbers

Graph $\sqrt{\frac{2}{3}}$ and $\frac{2}{3}$ on a number line. Then copy and complete the statement $\sqrt{\frac{2}{3}}$ $\frac{2}{3}$ with < or >.

Solution

Use a calculator to approximate the square root and write any fractions as decimals. Then graph the numbers on a number line and compare.

Answer: Because $\sqrt{\frac{2}{3}}$ is to the right of $\frac{2}{3}$, $\sqrt{\frac{2}{3}} > \frac{2}{3}$.

Guided Practice Graph the pair of numbers on a number line.

Then copy and complete the statement with <, >, or =.

7.
$$\sqrt{\frac{1}{9}}$$
 $\frac{2}{9}$ $\frac{1}{9}$

$$\frac{1}{9} = 0.\overline{1} \quad \sqrt{\frac{1}{9}} \approx 0.\overline{3}$$

$$- \frac{1}{9} = \frac{1}{19} + \frac{1}{19}$$

EXAMPLE 3 Ordering Decimals

Order the decimals 0.63, 0.633, 0.63, and 0.636 from least to greatest.

Step 1 Write each decimal out to six decimal places.

$$0.\overline{63} = 0.636363...$$

$$0.6\overline{3} = 0.6333333...$$

step 2 Write the decimals in order from least to greatest,

Answer: From least to greatest, the order is

, and
$$0.\overline{636}$$

EXAMPLE 4. Using an Irrational Number in Real Life

Stopping Distance The equation $s = \sqrt{27d}$ gives the minimum distance that it takes a car to stop on dry pavement after applying the brakes. In the equation, d represents the stopping distance in feet of a car that is traveling at a speed of s miles per hour. A car's stopping distance is 138 feet. How fast was the car traveling?

Solution

$$s = \sqrt{27d}$$

Write original equation.

$$=\sqrt{27(138)}$$

Substitute 138 for d.

Multiply.

Approximate square root.

Answer: The car was traveling about |61.04 | miles per hour.

Homework

Guided Practice Use the equation in Example 4.

8. A car's stopping distance is 200 feet. How fast was the car traveling?